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Abstract. We present a self-supervised approach to learn audio-visual
representations from video. Our method uses contrastive learning for
cross-modal discrimination of video from audio and vice versa. We show
that optimizing for cross-modal discrimination, rather than within-modal
discrimination, is important to learn good representations from video
and audio. With this simple but powerful insight, our method achieves
state-of-the-art results when finetuned on action recognition tasks.

1 Introduction

In this work, we leverage freely occurring audio to learn video representations
in a self-supervised manner. A common technique [2, 10, 13, 14] is to setup a
verification task that requires predicting whether an input pair of video and
audio is ‘correct’ or not. However, these tasks use a single pair at a time and
miss a key opportunity to reason about the data distribution at large. We pro-
pose a contrastive learning framework to learn cross-modal representations in
a self-supervised manner by contrasting video representations against multiple
audios at once (and vice versa). We leverage recent advances [8, 12, 21, 24] in
contrastive learning to setup a Audio-Visual Instance Discrimination (AVID)
task that learns a cross-modal similarity metric by grouping video and audio
instances that co-occur. We show that the cross-modal discrimination task, i.e.,
predicting which audio matches a video, is more powerful that the within-modal
discrimination task, predicting which video clips are from the same video. Our
technique improves upon the state-of-the-art self-supervised methods on action
recognition benchmarks like UCF-101 and HMDB-51.

2 Audio-Visual Instance Discrimination (AVID)

Goal and Intuition. Consider a dataset of N samples (instances) S = {si}Ni=1

where each instance si is a video svi with a corresponding audio sai . AVID learns
visual and audio representations (vi,ai) from the training instances si where the
representations are optimized for ‘instance discrimination’ [5, 24], i.e., must be
discriminative of si itself as opposed to other instances sj .

To accomplish this, two neural networks extract unit norm feature vectors
vi = fv(svi ) and ai = fa(sai ) from the video and audio independently. Slow
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Fig. 1: Instance discrimination can be accomplished contrasting representations within
the same modality (Self-AVID), across modalities (Cross-AVID) or a mixture of the
two (Joint-AVID).

moving (exponential moving average) representations for both video and audio
features {(v̄i, āi)}Ni=1 are maintained as ‘memory features’ and used as targets for
contrastive learning. The AVID task learns representations (vi,ai) that are more
similar to the memory features of the instance (v̄i, āi) as opposed to memory
features of other instances (v̄j , āj), j 6= i.

Unlike previous single modality approaches [5, 24], AVID uses multiple modal-
ities (similar to [21]), and assumes multiple forms as shown in Fig 1.

1. Self-AVID requires instance discrimination within the same modality.

2. Cross-AVID optimizes for cross-modal discrimination.

3. Joint-AVID combines the Self-AVID and Cross-AVID objectives.

Loss function. We use noise contrastive estimation (NCE) [7], where represen-
tations of instances si are contrasted to samples in a randomly sampled negative
set Ni. We build upon the implementation of [24] and refer the reader to their
paper for details. The three variants of AVID depicted in Fig 1 are trained to
optimize variations of the NCE loss by varying the target representations.

LSelf-AVID(vi,ai) = LNCE(vi; v̄i,Ni) + LNCE(ai; āi,Ni) (1)

LCross-AVID(vi,ai) = LNCE(vi; āi,Ni) + LNCE(ai; v̄i,Ni) (2)

LJoint-AVID(vi,ai) = LSelf-AVID(vi,ai) + LCross-AVID(vi,ai) (3)

3 Experiments

It is not immediately obvious what are the the relative advantages of the AVID
variants described above. We now analyze them and show that, surprisingly, the
seemingly minor differences between them translate to significant differences in
performance. Models are trained using a random subset of Audioset dataset [6]
containing 100K videos. The video model is a smaller version of the R(2+1)D
models proposed in [22] with 9 layers. The audio network is a 9 layer 2D ConvNet
with batch normalization. In both cases, output activations are max-pooled,
projected into a 128-dimensional feature using a MLP [4] and normalized. We
will provide full training details and release the code and models. We evaluate
learned features by training linear classifiers on fixed features. Visual features are
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Method block1 block2 block3 block4 Best

Cross-AVID 19.80 26.98 34.81 39.95 39.95

Self-AVID 17.10 22.28 27.23 32.08 32.08

Joint-AVID 18.65 23.60 29.47 33.04 33.04

(a) Top-1 Accuracy of linear probing on Kinetics.

block1 block2 block3 block4 Best

Cross-AVID 67.25 73.15 74.80 75.05 75.05

Self-AVID 66.92 72.64 71.45 71.61 72.64

Joint-AVID 65.45 68.65 71.77 68.41 71.77

(b) Top-1 Accuracy of linear probing on ESC.

Table 1: Transfer performance of representations learned by AVID variants.

Method Backbone Input UCF HMDB

Pre-training DB: Kinetics

DPC [9] 3D ResNet-34 25×1282 75.7 35.7

CBT [20] S3D Inception 16×1122 79.5 44.6

L3∗ [2] R(2+1)D-18 16×2242 74.4 47.8

AVTS [10] MC3-VGGish-9 25×2242 85.8 56.9

8×2242 74.2 39.0
XDC [1] R(2+1)D-18

32×2242 84.2 47.1

8×2242 82.3 49.1
Cross-AVID R(2+1)D-18

32×2242 86.9 59.9

Pre-training DB: Audioset

L3∗ [2] R(2+1)D-18 16×2242 82.3 51.6

Multisensory [13] 3D-Resnet-18 64×2242 82.1 –

AVTS [10] MC3-VGGish-9 25×2242 89.0 61.6

8×2242 84.9 48.8
XDC [1] R(2+1)D-18

32×2242 91.2 61.0

8×2242 88.3 57.5
Cross-AVID R(2+1)D-18

32×2242 91.0 64.1

(a) Action recognition

Method ESC DCASE

Pre-training DB: None

RandomForest [16] 44.3 –

ConvNet [15] 64.5 –

ConvRBM [17] 86.5 –

Pre-training DB: Flickr-SoundNet

SoundNet [3] 74.2 88

L3 [2] 79.3 93

Pre-training DB: Kinetics

AVTS [10] 76.7 91

XDC [1] 78.5 –

Cross-AVID 77.6 93

Pre-training DB: Audioset

AVTS [10] 80.6 93

XDC [1] 85.8 –

Cross-AVID 89.2 96

(b) Sound classification

Table 2: Top-1 accuracy on UCF, HMDB, ESC and DCASE validation data. Meth-
ods are organized by pre-training dataset. Our AVID model achieves state-of-the-art
performance in most cases.

evaluated on the Kinetics dataset [23] for action recognition, and audio features
on the ESC-50 [16] dataset.

Cross-modal vs. within-modal instance discrimination: The performance
of the three AVID variants are shown in Tab 1. We observe that Self-AVID is
consistently outperformed by Cross-AVID on both visual and audio tasks. Self-
AVID uses within-modality instance discrimination which is an “easier” (self-
referential) pretext task and can be partially solved by matching low-level statis-
tics. This hypothesis is supported by the fact that Joint-AVID, which combines
the objectives of both Cross-AVID and Self-AVID, also performs worse than
Cross-AVID. Cross-AVID uses a “harder” cross-modal instance discrimination
task where the video features are required to match to the corresponding audio
and vice-versa. As a result, it generalizes better to downstream tasks.

Comparison to prior work We now compare Cross-AVID to recent self-
supervised methods. We use the 18-layer R(2+1)D network of [22] as the video
encoder and a 9-layer (2D) CNN with batch normalization as the audio encoder.
Models are trained either on Kinetics-400 [23] or the full Audioset [6] datasets.

Following prior work [9, 10, 21], we evaluate visual representations on the
UCF-101 [18] and HMDB-51 [11] datasets by full network fine-tuning using clips
with both 8 and 32 frames. At inference time, predictions are computed by
averaging 10 sub-clips [10]. Tab 2a shows that Cross-AVID achieves state-of-the-
art performance for equivalent data settings in most cases. When pre-trained on
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Audioset, Cross-AVID outperformed other audio-visual SSL methods such as L3
and AVTS by at least 2.0% on UCF and 2.5% on HMDB. Similar to Cross-AVID,
L3 and AVTS seek to predict whether audio/video pairs are in-sync. However,
these methods optimize for the binary audio visual correspondence task, which
fails to reason about the data distribution at large. The concurrently proposed
XDC relies on clusters in the visual and audio spaces to provide cross-modal
supervision. The instance discrimination approach of Cross-AVID outperforms
XDC in most settings.

Audio representations are evaluated on the ESC-50 [16] and DCASE [19]
datasets by linear probing using a linear one-vs-all SVM classifier (as in [10]).
At test time, sample level predictions are obtained by averaging 10 clip level
predictions. Tab 2b shows that Cross-AVID also outperforms prior work by sig-
nificant margins (2.7% on ESC and 3% on DCASE).
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