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1 Introduction
Real-world applications of object recognition often require the solution of multiple tasks in a single
platform. Under the standard paradigm of network fine-tuning, an entirely new CNN is learned per task,
and the final network size is independent of task complexity. This is wasteful, since simple tasks require
smaller networks than more complex tasks, and limits the number of tasks that can be solved simul-
taneously. To address these problems, we propose a transfer learning procedure, denoted NETTAILOR,
in which layers of a pre-trained CNN are used as universal blocks that can be combined with small
task-specific layers to generate new networks. Besides minimizing classification error, the new network
is trained to mimic the internal activations of a strong unconstrained CNN, and minimize its complexity
by the combination of 1) a soft-attention mechanism over blocks and 2) complexity regularization con-
straints. In this way, NETTAILOR can adapt the network architecture, not just its weights, to the target
task. Experiments show that networks adapted to simple tasks, such as character or traffic sign recog-
nition, become significantly smaller than those adapted to hard tasks, such as fine-grained recognition.
More importantly, due to the modular nature of the procedure, this reduction in network complexity
is achieved without compromise of either parameter sharing across tasks, or classification accuracy.

2 NetTailor
A CNN implements a function f(x)=(GL◦GL−1◦···◦G1)(x) by composingL computational blocks
Gl(x) consisting of simple operations, such as convolutions, spatial pooling, normalization among
others. While the blocksGl(x) differ with the CNN model, they are often large, both in terms of compu-
tation and storage. Thus, in order to accomodate multiple tasks, it is desirable to share network resources
between them (2). In this work, we introduce a new transfer technique, denoted NETTAILOR, which
adapts the architecture of a pre-trained model to a target task, while reusing layers of a pre-trained CNN
as universal blocks shared across tasks. The NETTAILOR procedure can be summarized as follows.

1. Train the teacher network by fine-tuning a pre-trained network on the target task.
2. Define the student network by augmenting the pre-trained network with task-specific

low-complexity proxy layers.
3. Train the task-specific parameters of the student network on the target task to mimic the

internal activations of the teacher, while imposing complexity constraints that encourage
the use of low-complexity proxy layers over high-complexity pre-trained blocks.

4. Prune layers with low impact on network performance, and fine-tune the remaining
task-specific parameters.

Student network architecture The main architectural component introduced in this work is the
augmentation of the pre-trained network. Each layer Gl of the pre-trained network is augmented
with a set of lean proxy layers {Al

p(·)}l−1
p=1 that introduce a skip connection between layers p and l.

As the name suggests, proxy layers aim to approximate and substitute the large pre-trained blocks
Gl(·) whenever possible. The output activation xl of layer l is computed by pooling all blocks

xl =αl
lGl(xl−1)+
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p=1α

l
pA

l
p(xp), (1)

where {αl
p}lp=1∈ [0,1] are a set of scalars that enable or disable the different network paths.

Proxy layers are forced to compete with each other to minimize the propagation of redundant
information through the network. This is accomplished by introducing a set of auxiliary parameters

alp and computing αl
p as the softmax across all paths merging into layer l, i.e. αl

p = e
al
p∑
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k
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Figure 1: Reduction of network complexity and final architecture after adapting ResNet34 using NETTAILOR.

Differential complexity constrains In the complexity-aware pooling block, scalars {αl
p}lp=1 act as

a soft-attention mechanism that selects which blocks to use for the target task. LetBj
i (·) denote the

computational block associated with path i→j, and Cji its complexity. A blockBj
i (·) can be removed if

αj
i is close to zero. Under the modeling assumption that the probability of exclusion is given byP (Rj

i )=

1−αj
i , the expected complexity of block Bj

i is E[Cji ] = Cji (1−P (Rj
i ). Complexity constrains can

thus be imposed by minimizing the expected network complexityE[C]=
∑

i,jE[Cji ]. Note that unlike
recent network architecture search approaches (3), NetTailor relies on differentiable optimization.

Mimicking the teacher The teacher network is obtained by fine-tuning a pre-trained network for
the target task. To transfer this knowledge to the student network, the latter is encouraged to match the
internal activations of the teacher, by adding theL2 regularizer, Ω=

∑
l‖xt

l−xl‖2, where xt
l is the acti-

vation of lth block of the teacher network, xl the corresponding activation of the student network given
by (1), and the sum is carried over all internal blocks as well as network outputs (prior to the softmax).

3 Evaluation
To study the effectiveness of NETTAILOR, we tuned the ResNet34 architecture to three classification
datasets of varying characteristics (SVHN, VGG-Flowers and Pascal VOC 2012) and measured the
maximum achievable reduction in network complexity that retains performance similar to fine-tuning.
Global blocks are obtained by pre-training ResNet34 on ImageNet and remain unchanged afterward in
order to share them across tasks. The student is assembled by augmenting the pre-trained blocks with
three skip connections per layer. The complexity Cj

i is defined as the number of FLOPs of each block.
After training the student network, all proxies with αj

i <0.05 are removed andremaining task-specific
parameters finetuned without complexity constraints.

Fig. 1 shows the results. We list the total number of layers, parameters (global and task-specific)
and FLOPs removed from the pre-trained network by NETTAILOR. We also display the final learned
architecture for each task. Fig. 1 shows that networks trained for simpler tasks, such as SVHN, are
the most heavily pruned, with 9 out of 18 pre-trained blocks removed. This results in a drastic 73.4 %
reduction in total parameters and a 45.8 % reduction in FLOPs. For simpler tasks, most residual
blocks are unnecessary and fine-tuning likely converts them into transformations close to the identity,
which can be replaced by low complexity proxies. NETTAILOR also obtains significant reductions
for the more complex Flowers and VOC datasets. Overall, the results of Fig. 1 show that, for many
applications, large pre-trained networks can be significantly reduced, both in size and speed, without
loss of performance. Furthermore, because the pre-trained blocks remain unchanged, only a small
number of new parameters is introduced per task: 1.90M (million) for VOC, 1.88M for flowers and
1.85M for SVHN (pre-trained ResNet34 blocks have a total of 21.29M parameters).

Full technical details and additional experiments are shown in the full version of this abstract paper (1).
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