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Abstract

Existing feature selection methods are able to choose discriminative features with low redundancy but are computationally too
expensive for neuroimaging applications. This occurs because they analyze every brain voxel while trying to reduce the redundancy
between the selected features. We propose a significantly faster method that focuses on the main source of redundancy which
is neighboring voxels and compare this new approach with four other well-known feature selection methods, evaluating them
extensively on three datasets. We start by using an artificial dataset to study the robustness of our approach to noisy features,
erroneous labels and small number of samples, which are problems that are often encountered when building a CAD system
that takes brain images as its input. Then, we analyze the computational complexity of our method and study its usefulness
for the diagnosis of Alzheimer’s disease and Mild Cognitive Impairment using FDG-PET images and tissue probability maps of
Gray-Matter extracted from MR images. Experimental results on synthetic and real data clearly validate our approach as a very
efficient algorithm for the selection of non-redundant features applicable to a variety of neuroimaging techniques. In fact, the major
computational gains come at no cost in either performance or robustness.

Keywords: Incremental Feature Selection, Minimal Neighborhood Redundancy Maximal Relevance, Mutual Information,
Alzheimer’s disease, Mild Cognitive Impairment, FDG-PET, MRI, Support Vector Machines

1. Introduction

Alzheimer’s disease (AD) is the leading cause of demen-
tia. Its incidence rate grows exponentially with age, affecting
mainly people over 65 years old and achieving alarming rates
of 40% for people older than 85 [1, 2]. Even though it is a
progressive disease, affecting memory and other cognitive and
physical abilities, and for which no treatment can currently cure
or stop its progress, some pharmaceuticals can slow down the
advance of symptoms, especially if the disease is detected in
its early stages [3]. Hence, the early diagnosis of AD, while
still at the stage known as Mild Cognitive Impairment (MCI),
is essential to improve patients’ life quality and extend life ex-
pectancy [2, 3]. However, the early diagnosis is a difficult task
because there is no completely reliable test for its diagnosis [2],
and the physician must rely on the cognitive and behavioral his-
tory of the patient and on cognitive, physical and neurological
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tests. Neuroimaging techniques such as Positron Emission To-
mography (PET) using Fluorodeoxyglucose (FDG) as the tracer
or structural Magnetic Resonance Images (MRI) can also be
used, when available, to increase the confidence of the diagno-
sis [4, 5].

FDG-PET imaging techniques, on the one hand, measure at
each voxel the local consumption rate of glucose. Thus, since
Alzheimer’s disease is characterized by a reduction of brain ac-
tivity in specific regions, this type of neuroimage can unveil
important information about the disease. On the other hand,
structural MR images have nowadays enough contrast and res-
olution to identify, delineate and measure the volumes of the
three main types of brain tissue: Gray Matter (GM), White
Matter (WM) and Cerebrospinal Fluid (CSF). Thus, this type
of neuroimage can also play a major role in diagnosis because
it reveals the patterns of tissue degeneration that are character-
istic of Alzheimer’s disease.

In fact, in the last decade, the development of computer-
aided diagnostic (CAD) systems focusing mainly on the in-
formation provided by these neuroimaging techniques has at-
tracted much attention [6, 7, 8, 9, 10, 11]. In addition to mak-
ing the diagnosis less dependent on the physician’s expertise,
the use of automated tools allows a more sensitive analysis of
AD-related changes, which can lead to earlier detections and
more accurate predictions. However, one of the main difficul-
ties that arise in such CAD systems is the high-dimensionality
of the 3D brain images in comparison with the small number
of samples that are typically available. It has long been known
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that this setting leads to the degradation of the generalization
ability of many classifiers, a phenomenon known as the curse
of dimensionality [12]. To prevent this issue, the diagnosis of
AD should be done using classifiers that are more robust to the
small sample size problem, such as the Support Vector Machine
(SVM), and dimensionality reduction techniques should be ex-
plored so that the initial number of features is reduced.

In the context of neuroimaging based diagnosis, a variety of
methods have already been proposed to reduce the dimension-
ality of the problem. Common examples include: aggregation
techniques where the brain is first parcelated into Regions of In-
terest (ROIs) and then simple features are extracted from them;
feature extraction techniques based on linear projections such
as Principal Component Analysis (PCA) or Linear Discrimi-
native Analysis (LDA); and feature selection algorithms where
the most statistically discriminative features are searched so that
the irrelevant ones can be ignored. All these techniques help to
alleviate the small sample size problems intrinsic to the high
dimensionality of PET and MR images and allow a faster train-
ing of the learning machine. In this work we will focus on the
latter.

Feature selection procedures used with voxel based neu-
roimaging applications are typically univariate methods that search
for the most discriminative features. However, the main disad-
vantage associated with these methods is the fact that they can-
not avoid redundant features. As a consequence, a large number
of voxels selected by univariate approaches typically form clus-
ters around a small number of highly discriminative regions in
the neuroimage, where a small number of voxels would suffice
to extract the same information. Multivariate procedures, on
the other hand, can search for discriminative and non-redundant
sets of features, but since this is typically done incrementally,
such methods are computationally unappealing because the ini-
tial number of features in this problem is extremely high.

In this work, we propose a multivariate procedure capa-
ble of selecting non-redundant subsets of features significantly
faster than other similar methods. Our approach is inspired
in the Minimal Redundancy Maximal Relevance (mRMR) al-
gorithm proposed by Peng et al. [13], and uses a metric that
accounts both for the relevance of the voxels and the redun-
dancy with the ones already selected. We limit however the ex-
amination of the redundancy to only neighboring voxels, since
they account for the majority of voxel interactions. The perfor-
mance of the proposed algorithm is compared with four other
well-known selection approaches in terms of generalization and
time-requirements when applied to the diagnosis of AD and
MCI. Comparisons are conducted on a synthetic and two real
datasets which are composed by FDG-PET images and Gray-
Matter tissue probability maps obtained from MR images. We
show that by avoiding the redundancy between voxels, we pre-
vent the algorithm from concentrating the selected features on a
single (even though highly discriminative) region of the brain,
i.e. we encourage the selection of voxels not only from highly
affected regions, but also from areas that were only moderately
impaired. In addition, our approach is able to accomplish this
goal very efficiently, in contrast with the original mRMR algo-
rithm. We also study the robustness of the different selection

techniques to noisy features, noisy class labels and small sam-
ple sizes. The experiments conducted suggest that no selec-
tion technique was completely robust to noise (both in the fea-
ture values and the class labels), but our approach was always
amongst the algorithms with best results. These experiments
complement the preliminary tests published in [14], where only
the classification performance of our algorithm was evaluated,
using only one dataset of FDG-PET images.

The structure of the remaining of this paper is the following.
In section 2, we review the feature selection literature as well
as state-of-the-art methods for the diagnosis of Alzheimer’s dis-
ease and related disorders, giving special attention to their di-
mensionality reduction components. Then, in section 3.1, all
feature selection algorithms studied in this work are described,
and a brief explanation of Support Vector Machines is given
in section 3.4. Next, the acquisition and preprocessing of the
MRI and PET database is presented in section 4. Experimen-
tal results are listed and discussed in section 5 and the main
conclusions are summarized in section 6.

2. State-of-the-art

Feature selection algorithms can be broadly classified into
three groups: wrapper methods that depend on the performance
of a classifier; embedded methods where feature selection is an
integral part of the learning machine; and filter methods which
base their decision only on the statistics of the data and are in-
dependent of any classifier [15].

Wrapper methods measure the utility of subsets of features
using estimates of the generalization ability of one specific clas-
sifier. Thus, they are potentially more discriminative, but have
the disadvantage of being computationally heavier than other
methods. Two good examples of this approach are the works of
Kohavi et al. [16] and Inza et al. [17] which showed that wrap-
per methods can achieve significant improvements in perfor-
mance when compared to filters. Wrapper methods can also be
found in the context of AD diagnosis. For example, Chyzhyk et
al. [18] proposed a CAD system where the combinatorial space
of all possible subsets of features was searched using a genetic
algorithm. Note that, similarly to the method proposed in this
work, a wrapper approach can also be used to select sets of fea-
tures incrementally, making it optimal in terms of classification
performance under this incremental selection constrain. How-
ever, this is only feasible when the initial set of features is very
small, becoming impractical even for moderate feature sizes.

Embedded methods are computationally more efficient since
the selection of features is done at the training stage, by ex-
ploiting the structure of the classifier. However, one disadvan-
tage is that embedded methods, similarly to wrappers, tend to
obtain subsets of features that are sensitive to the learning al-
gorithm. Examples of embedded approaches include common
decision trees algorithms such as CART [19], or other more
evolved methods, such as the SVM-based approach proposed
by Weston et al. [20], which tries to optimize a trade-off be-
tween goodness of fit and number of variables. Similarly to
Weston’s work, regression based approaches can also be used
for feature selection, for instance using elastic net regression
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[21]. Applications to the diagnosis of Alzheimer’s disease in-
clude for instance the work of Casanova et al. [22], where an
elastic net regularization scheme was applied to a logistic re-
gression classifier, and used to distinguish between Alzheimer’s
disease and healthy subjects on structural MRI data. Note that
such methods consider the interactions between variables and
allow for the selection of uncorrelated features if a high weight
is set on the L1 term of the regularized loss function. However,
as mentioned earlier and contrary to the method proposed in
this work, the success of these methods depend strongly on the
choice of the classification/regression model.

Filter methods, on the other hand, are typically faster than
wrappers and offer a more general alternative, i.e. independent
of any classifier. These approaches try to identify statistical
dependencies between features and the class using a variety
of utility measures. Battiti [23] proposed one of the first in-
cremental multivariate methods based on mutual information,
where, in each step, the relevance of each unselected feature is
weighted against its redundancy with the already selected ones.
This approach, which is known as Mutual Information based
Feature Selection (MIFS), is in fact very similar to the Minimal
Redundancy Maximal Relevance (mRMR) algorithm proposed
by Peng et al. [13] and which will be further discussed in sec-
tion 3.2.3. More recently, different criteria have been proposed
such as the conditional mutual information [24] or the second
order approximation of the joint mutual information between
all features and the class label [25]. However, these multivariate
approaches are in general computationally too demanding to be
used in very high dimensional problems such as the diagnosis of
AD based on neuroimages. As a consequence, most studies in
this field only explore univariate methods based, for instance,
on Mutual Information [11], Pearson’s correlation coefficient
[26] or the Fisher discriminant ratio [27, 28]. The disadvantage
of univariate procedures is mainly the fact that they are not able
to avoid redundancy between selected features. Hence, we pro-
pose an efficient multivariate algorithm that takes advantage of
the inherent redundancy between neighboring voxels to accel-
erate the computations.

Finally, it should be mentioned that successful techniques
typically take the characteristics of the problem into account,
and explore them using the methods discussed above. For ex-
ample, Fan et al. [6] proposed a method for the classification
of tissue density maps extracted from MR images. In this ap-
proach, the input-space was first reduced using a watershed al-
gorithm to automatically delineate regions that show high dis-
criminative power, from which regional volumetric features were
extracted. Then, using SVM classifiers, an incremental wrapper
approach was used to further reduce the number of features. In
a different work, Segovia et al. [29] tested two dimensionality
reduction techniques on FDG-PET images. The first approach
modeled the difference between the averages of the images that
belonged to each of the two clinical states (healthy and AD)
using Gaussian Mixture Models and then, computed the final
features by projecting the individual images onto each Gaus-
sian component. The second approach was based on the Partial
Least Squares (PLS) method that assumes that the data is gen-
erated by a linear process driven by a small number of latent

vectors or components. Thus, after finding these latent vari-
ables, the PLS scores (one for each component) were extracted
and used as features.

3. Methods

In this section, we provide a concise description of all the
methods used in this work. We start with 3 feature selection al-
gorithms that were used for comparison and then introduce the
proposed approach - minimal neighborhood redundancy maxi-
mal relevance. Next, we provide a brief description of the SVM
algorithm, which was used for classification, and of the evalua-
tion criteria used to compare the different methods.

3.1. Feature selection

Formally, feature selection can be defined as follows. Sup-
pose we have a labeled dataset D composed of P samples with
N features, i.e. D =

{(
x(p), y(p)

)
| p = 1, . . . , P

}
where x(p) =

(x(p)
1 , . . . , x(p)

N ) is the N-dimensional feature vector of the pth

sample and y(p) is its class label. The feature values x(p)
n and

the class labels y(p) should also be seen as realizations of the
underlying random variables Xn and Y , respectively. The goal
of feature selection is, therefore, to find the subset of K features
that “optimally” describes the class label.

Since the purpose of feature selection is to reduce the in-
put space without losing discriminative information, the ideal
optimality criterion would be the minimization of the Bayes er-
ror associated with the subset of chosen variables. However,
this criterion cannot be used in practice for two reasons: first,
since all possible subsets would need to be evaluated, this crite-
rion is computationally infeasible, and second because the true
probability distributions that describe the data are generally not
known and difficult to estimate for high-dimensional vectors.
As a consequence, alternative criteria need to be defined lead-
ing to different feature selection algorithms. In this work, in
addition to a dummy technique that operates in a completely
random fashion (implemented just for comparison purposes),
four other algorithms were studied which are now described.

3.2. Previous Methods

3.2.1. ReliefF
ReliefF, proposed by Kononenko [30], is an extension of

the Relief algorithm proposed by Kira and Randell [31]. This
extension was designed to deal with multiclass problems, to im-
prove the robustness to noise and to deal with incomplete data.
The key idea of both algorithms is to assess each feature based
on how well its values can distinguish samples that lie close
to each other in the feature space, i.e. both Relief and ReliefF
favor features whose values are closer between neighboring im-
ages of the same class and farther apart between neighbors of
different classes. However, Relief only looks for the nearest
image in both classes, while ReliefF averages the influence of n
images. The nearest vectors are searched for using the standard
l2-norm to measure the distance between images in the high-
dimensional image space.
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Algorithm 1 ReliefF
1: Ji ← 0; i = 1, . . . ,N
2: Ci ← max(Xi) −min(Xi); i = 1, . . . ,N
3: for p = 1 to P do
4: H(1,...,n) ← Set of n nearest hits of X(p);
5: M(1,...,n) ← Set of n nearest misses of X(p);
6: for i = 1 to N do

7: Ji ← Ji +

n∑
j=1

|X(p)
i −M( j)

i |

P·n·Ci
−

n∑
j=1

|X(p)
i −H( j)

i |

P·n·Cn
;

8: end for
9: end for

In our experiments, we used ReliefF whose pseudo-code
can be seen in Algorithm 1. In this pseudo-code, the nearest
hits (misses) of X(p) are the set of images in the training set
that are closest to X(p) in the image space and that belong to
the same (opposite) class. Note also that a few straightforward
(problem specific) simplifications were made that resulted from
the fact that all features used for the AD and MCI diagnosis are
numeric, the number of training instances is small (and so there
is no need to randomly sample from it as originally proposed
by Kononenko [30]) and the algorithm will only be used for
binary problems. The interested reader is referred to [32] for a
more thorough theoretical and empirical analysis of this family
of algorithms.

ReliefF is conceptually different to the procedures that are
now presented. Also, even though it is a ranking algorithm, and
thus computationally attractive, it considers the interactions be-
tween different features when looking for the closest hits and
misses. These were the reasons why we used ReliefF for com-
parison purposes.

3.2.2. Mutual Information Maximization
Some of the most widely used criteria for feature selec-

tion purposes are based on mutual information (MI). Mutual in-
formation I(W,Z) is an information-theoretic measure between
two random variables W and Z that quantifies by how much the
uncertainty of one of them is reduced by knowing the other, or
in mathematical terms, I(W,Z) = H(W) − H(W |Z), where H(·)
is the entropy. Alternatively, the definition of MI can be com-
pressed into the following single equation:

I (W,Z) =
∑

w∈W

∑
z∈Z

p(w, z) log
p(w, z)

p(w)p(z)
, (1)

whereW andZ denote the dictionaries of the variables W and
Z, respectively.

The simplest approach to feature selection based on Mu-
tual Information, which from hereafter will be referred to as
Mutual Information Maximization (or MIM), only takes into
account the Mutual Information between each feature and the
class labels and can be described in three simple steps. First, the
real-valued features Xn are quantized into a predefined number
of values b, generating the corresponding discrete features X′n.
Then, the relevance of each feature is measured using the mu-
tual information I(X′n,Y) between its discretized version and the

class label and, finally, the MI scores are sorted and the best K
features selected.

In a final note, it should be mentioned that the estimation
of mutual information using frequency counts is biased due to
the concave shape of the logarithmic function as pointed out
by Paninski [33]. Despite this, we chose this approach due to
its simplicity and computational efficiency. Besides, we are not
interested in the estimates of the mutual information per se, but
in the ranking of the features instead.

3.2.3. Minimal Redundancy Maximal Relevance
A disadvantage of MIM is that the redundancy is not penal-

ized and, thus, completely redundant features can be selected
before other non-redundant ones, i.e. features can be selected
without any improvement to the discriminative power of the
whole subset. This is especially important in the current ap-
plication because we are dealing with smoothed brain images
where neighboring voxels share redundant information by na-
ture.

An alternative approach consists on selecting new features
incrementally, starting from an empty set, where, at each step,
only the feature that maximizes some utility measure is cho-
sen. The minimal redundancy maximal relevance (mRMR) cri-
terion, as proposed by Peng et al. [13], adopts this incremen-
tal approach using the utility measure shown in equation (2)
to compare, in each iteration, all unselected features Xn. This
criterion tries to choose the most relevant features while mini-
mizing the average redundancy with the ones already selected.

J (Xn) = I(Xn,Y) −
1
|S |

∑
m∈S

I(Xn, Xm) (2)

In the above equation, S represents the set of features pre-
viously selected and |S | its cardinality. For clarity purposes,
the algorithmic details of a generic incremental feature selec-
tion technique can be consulted in Algorithm 2. In the case of
mRMR, the utility measure in line 5 should be computed using
equation (2).

One disadvantage of mRMR is its computational require-
ments, mainly due to the estimation of the redundancy terms
I(Xn, Xm). For instance, in the second iteration, this term has to
be estimated N − 1 times (between the feature selected at itera-
tion 1 and the N − 1 unselected), in the second iteration, N − 2
times, and so forth. Thus, in order to select K features, a total
of (K − 1)(N −K/2) terms need to be evaluated which becomes
intractable for large values of N and K.

3.3. Proposed Approach
A solution to the computational problem described above is

now proposed, and will be called Minimal Neighborhood Re-
dundancy Maximal Relevance (mNRMR). A preliminary ver-
sion of this algorithm can be found in [14]. The solution is
proposed after realizing that one of the most important causes
of redundancy between voxel intensities is their spatial distribu-
tion. As can be seen in Figure 1, voxels close to each other (di-
rect neighbors) or located symmetrically on the two brain hemi-
spheres (symmetric neighbors) tend to be more correlated than
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Algorithm 2 Generic incremental feature selection algorithm
1: F ← {1, . . . ,N}; \\ Set of unselected features
2: S ← {}; \\ Set of selected features
3: for k = 1 to K do
4: for n in F do
5: Jn ← Utility measure of feature Xn given S ;
6: end for
7: n∗ ← argminn Jn;
8: S ← {S , n∗};
9: F ← F \ n∗;

10: end for

non-neighboring voxels. In addition, the redundancy between
non-neighbors has a smaller variance than between neighbors.
These insights suggest that the sum of redundancy terms in
equation (2) can be separated into two parts (one for neigh-
boring and the other for non-neighboring voxels), and then the
terms between non-neighbors can be replaced by a constant Înn

estimated beforehand without losing too many important voxel
interactions. Taking these changes into account, the utility mea-
sure becomes:

J (Xn) = I(Xn,Y) −
|S ∩ N̄n|Înn +

∑
m∈S∩Nn

I(Xn, Xm)
|S |

, (3)

where Nn represents the set of voxels that belong to the neigh-
borhood of Xn or are symmetrically located in the opposite
hemisphere and N̄n the set of all remaining non-neighboring
voxels. In addition, the notion of neighborhood was defined as

Nn = {m ∈ S : ‖cm − cn‖∞ ≤ r ∪ ‖cm − Sym(cn)‖∞ ≤ r} , (4)

where cn and cm are the coordinates of Xn and Xm, respectively,
Sym(·) computes the location of the symmetric voxel and r is
a parameter that controls the size of the neighborhood. Three
illustrative examples are given in Figure 2.

mNRMR, similarly to mRMR, is an incremental feature se-
lection method and, thus, it can also be accurately described by
Algorithm 2, using equation (3) to estimate the utility of each
unselected feature (in line 5).

3.4. SVM based classification
Support Vector Machine (SVM) [34, 35] is probably the

most widely used classifier for the automatic diagnosis of AD
and related disorders when neuroimages are used as the source
of information, mainly due to its robustness to high dimensional
data. In its simplest form, an SVM searches for the hyper-
plane in the input space that separates with maximum margin
instances from two classes. When such separating hyperplane
does not exist, then the SVM uses a soft margin concept which
allows errors to be committed while minimizing them. In addi-
tion, an SVM can be constructed to find a non-linear separation
surface on the input space, by mapping input patterns into a typ-
ically higher dimensional space (known as the feature space),
and then searching there for the optimal separating hyperplane.
Kernels are normally used to conduct this operation because
they avoid the explicit computation of the mapping. Note that

Figure 1: Histogram of the mutual information between neighboring and non-
neighboring pairs of features. Results extracted from the Voxel Intensities of
FDG-PET images and with a neighborhood size of 12 mm.

Figure 2: Neighborhood of the three voxels represented by the three crosses.
Despite the 2D representation, the neighborhood is three-dimensional.

some commonly used kernels, such as the Radial Basis Func-
tion (RBF), implicitly map the input space into an output space
of infinite dimension. However, empirical evidence suggests
that the linear kernel is at least as good as other kernels previ-
ously tested in the problem at hand, which is the reason why
only the linear SVM was used in this work.

The standard SVM formulation is known to be sensitive to
imbalanced datasets [36] because, when this imbalance is sig-
nificant, the SVM algorithm tends to find an hyperplane that
is biased towards the minority class, and thus achieving very
low accuracies for that class and almost perfect performances
on the majority class. A solution to this problem, and the one
that we explored in this work, is to increase the cost of misclas-
sification for the minority samples [37]. More specifically, this
can be done using two different parameters, C+ and C−, to con-
trol the cost of misclassifications in the two classes and setting
the two such that their ratio is proportional to the ratio of the
numbers of minority and majority instances (e.g. C+ = C and
C− = n+

n−C where n+ and n− are the number of instances in the
two classes). In this work, we used the SVM implementation
developed by Chang and Lin [38], known as LIBSVM.

3.5. Assessment Criteria

In order to obtain unbiased assessments of performance, a
k × k′ nested cross-validation procedure [39] was used. This
technique allowed us to search for the best value of the SVM’s
parameter C, which was done using a grid-search approach,
and, at the same time, evaluate the system in an unbiased fash-
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ion. In short, in each one of the k iterations, a k′-fold cross-
validation is used to estimate the accuracy associated with each
possible value of C and, then, an SVM is trained using the op-
timal value. Additionally, in each iteration, a small set of in-
stances remains untouched during the training process, which
are then used for testing purposes.

In order to reduce statistical fluctuations, five nested cross-
validation procedures with randomly sampled partitions were
conducted for every experiment and only the average perfor-
mance is reported.

3.5.1. Classification performance
After each nested cross-validation, several standard mea-

sures of performance were computed based on the predictions
and decision values f (x) associated with all samples (and which
were recorded while they were being used for testing purposes),
namely: the accuracy, the sensitivity or true positive rate (TPR),
the specificity or true negative rate (TNR), the balanced accu-
racy which is the average between the TPR and TNR, the ROC
curve (receiver operating characteristic) computed by changing
the threshold of the decision values and its AUC (area under
the curve). The diversity of evaluation measures will allow us
to study different aspects of the algorithms. However, only the
most relevant measures are reported in each experiment.

4. Data

4.1. ADNI Database
Data used in the preparation of this article were obtained

from the Alzheimer’s Disease Neuroimaging Initiative (ADNI)
database (adni.loni.usc.edu). The ADNI was launched in 2003
by the National Institute on Aging (NIA), the National Insti-
tute of Biomedical Imaging and Bioengineering (NIBIB), the
Food and Drug Administration (FDA), private pharmaceutical
companies and non-profit organizations, as a $60 million, 5-
year public-private partnership. The primary goal of ADNI has
been to test whether serial magnetic resonance imaging (MRI),
positron emission tomography (PET), other biological markers,
and clinical and neuropsychological assessment can be com-
bined to measure the progression of mild cognitive impairment
(MCI) and early Alzheimers disease (AD). Determination of
sensitive and specific markers of very early AD progression is
intended to aid researchers and clinicians to develop new treat-
ments and monitor their effectiveness, as well as lessen the time
and cost of clinical trials.

The Principal Investigator of this initiative is Michael W.
Weiner, MD, VA Medical Center and University of Califor-
nia San Francisco. ADNI is the result of efforts of many co-
investigators from a broad range of academic institutions and
private corporations, and subjects have been recruited from over
50 sites across the U.S. and Canada. The initial goal of ADNI
was to recruit 800 subjects but ADNI has been followed by
ADNI-GO and ADNI-2. To date these three protocols have re-
cruited over 1500 adults, ages 55 to 90, to participate in the re-
search, consisting of cognitively normal older individuals, peo-
ple with early or late MCI, and people with early AD. The fol-
low up duration of each group is specified in the protocols for

ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited
for ADNI-1 and ADNI-GO had the option to be followed in
ADNI-2. For up-to-date information, see www.adni-info.org.

In this study, we used 1.5T Magnetic Resonance (MR) im-
ages and Positron Emission Tomography (PET) images acquired
from 59 patients suffering from Alzheimer’s disease (AD), 135
with Mild Cognitive Impairment (MCI) and 75 Normal Con-
trols (NC). See Table 1 for more information about each group.
Both PET and MR images had already undergone a series of
preprocessing steps carried by ADNI researchers.

Table 1: Summary of clinical and demographic information for each group.
Format: Mean ± Standard Deviation

CN MCI AD

# Subjects 75 135 59
Age 75.9±4.6 75.2±7.3 76±6.6

Sex (% Fem.) 34.7 35.1 41.4
MMSE 29.1±1.0 27.2±1.6 23.5±2.0

CDR 0 0.5 0.8±0.2

4.1.1. ADNI PET Preprocessing
Several scans are acquired during a single visit, which are

then co-registered to each other and averaged. The average im-
age is reoriented such that the anterior-posterior axis of the sub-
ject is parallel to the AC-PC line and resampled using a 1.5 mm
grid. Finally, the reoriented and resampled image is filtered
with a scanner-specific function to produce images with an ap-
parent resolution similar to the lowest resolution scanners used
by ADNI [40].

4.1.2. ADNI MRI Preprocessing
After acquisition, MR images are corrected for gradient non-

linearity distortions using a scanner-specific algorithm. Also,
the B1 non-uniformity procedure is applied, when necessary, to
correct non-uniformities in the image’s intensity, and residual
non-uniformities are mitigated using an histogram peak sharp-
ening algorithm called N3 [41, 40].

4.1.3. Image preprocessing and registration
The images retrieved from the ADNI database are not aligned

with each other. Thus, in order to be able to make meaningful
voxel-wise comparisons, all images were warped into the MNI
standard space, as follows.

First, the brain tissue in all MR images was extracted (skull-
stripping) and segmented into white-matter (WM) and gray-
matter (GM). The extraction of brain tissue was performed with
FreeSurfer which employs an hybrid procedure that combines
watershed algorithms and deformable surface models [42]. Tis-
sue classification, on the other hand, was conducted with SPM8
that uses a unified segmentation approach [43] to produce gray
and white-matter probability maps. Second, each PET image
was co-registered with the corresponding skull-stripped MR im-
age using SPM8. Rigid-body transformations (6 degrees of
freedom) and an objective function based on the “sharpness”
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Figure 3: Summary of registration steps.

Figure 4: Examples of the neuroimages used in this work. An example of an already preprocessed FDG-PET image is shown on the left, a raw MR image in the
middle, and the spatially normalized tissue probability map of Gray-Matter extracted from the MR image on the right.

of the normalized mutual information between the two images
were used to conduct these co-registrations [44]. Third, all MR
images were non-linearly registered into an inter-subject tem-
plate using the DARTEL toolbox from SPM8 [45]. DARTEL
implements an iterative non-linear registration algorithm that
warps, in each step, the current versions of the two tissue prob-
ability maps (of GM and WM) into their corresponding aver-
age across individuals. These templates were then mapped to
the MNI-ICBM 152 nonlinear symmetric atlas (version 2009a)
[46] using an affine transformation. Finally, after completing
the above steps, the original PET images and the tissue proba-
bility maps of GM were resampled into the MNI-152 standard
space with a 3×3×3 mm resolution using the appropriate com-
position of transformations. Figure 3 summarizes the required
registration steps. The tissue probability maps of GM were also
smoothed using a Gaussian kernel with a full-width at half max-
imum of 8 mm and were spatially modulated, i.e. regions that
were expanded during the registration procedure were corre-
spondingly reduced in intensity and vice-versa. As for FDG-
PET images, the intensity was normalized using the Yakushev
normalization procedure [47]. Typically, FDG-PET images are
normalized by the average intracranial intensity. However, be-
cause the intensity in certain regions is lower in AD and MCI
patients, their normalized images show false hyperactivity in
the regions that are not affected. To prevent this effect, Yaku-
shev procedure first finds a region that is not affected by search-
ing for false hyperactivity in normalized images of AD patients,
and then performs the normalization using the average intensity
of that cluster (instead of the whole image). An example of each
type of image used in this work is shown in Figure 4.

4.2. Artificial database

In addition to the tissue probability maps of GM and the
PET images, we also tested the selection algorithms in an ar-
tificial dataset composed by 150 artificial images evenly dis-
tributed into two classes: C1 and C2. The advantage is that we
can control and know beforehand exactly which features are
important to the problem since the differences between classes
are set manually.

To build this dataset, we first computed the average of all
PET images of healthy participants. Then, for each new im-
age, a random volume where each voxel followed an indepen-
dent, zero mean, normal distribution was sampled, spatially
smoothed using a Gaussian filter (σ = 6 mm) and added to
the average PET image. This noise component was normal-
ized so that the ratio between its energy and the energy of the
average PET image could be set as desired. For the second
class C2, the intensity of 4 spherical regions (with a 12 mm ra-
dius) was reduced, multiplying each voxel in its interior by a
constant smaller than 1. These reduction factors were chosen
randomly for each region in each new image with uniform dis-
tribution between 0.9 and 1. The regions that were artificially
impaired are located mainly in the left and right lateral tempo-
ral and the left and right dorsolateral parietal and, overall, they
covered only 1.5% of the entire intracranial region (1028 voxels
out of 69887).

5. Experimental Results

Several parameters had to be set in the current study. Some
of them were simply fixed to a reasonable value, while others
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Table 2: Values or ranges used for the most important parameters.

Method Parameter Range/Value

MIM/mNRMR/ReliefF N. of Selected Features (K)
2, 5, 10, 25, 50, 100, 250, 500 1000, 2500,
5000, 10000 25000, 50000, 69887

mRMR N. of Selected Features (K) 2, 5, 10, 25, 50, 100, 250, 500 1000
ReliefF N. of Neighbors (n) 5
MIM/mRMR/mNRMR N. of Bins (MI estimation) (b) 8
mNRMR Neighborhood Size (r) 4
SVM Cost of Misclassification (C) 2−15, 2−12, . . . , 26

Cross-Validation N. of Folds ((k) and (k′)) 10

were searched within some range. We opted not to optimize the
size of the selected subsets inside the nested cross-validation
procedure (together with the SVM’s parameter C) not only due
to the larger computational requirements but also to be able to
analyze the effect of this parameter on the performance of the
system. With this goal in mind, our experiments covered the
whole range of values for this parameter, from only 2 voxels up
to the entire set of 69887 voxels. Because this is a large range,
an exponential progression had to be used. For completeness, a
summary of the most important parameters that had to be set in
this work, and their respective values/ranges can be seen in Ta-
ble 2. It should be mentioned that a few experiments were made
with all parameters, and the values shown here are the ones that
lead to consistently good results with each approach. Also, no-
tice that in the case of mRMR, we only allowed the number of
voxels to be selected to go up to 1000 because of the excessive
computational requirements. Finally, the parameter associated
with the average redundancy between non-neighboring voxels
(Înn) was estimated once for each problem from a random sam-
ple of 100000 pairs of non-neighbors.

5.1. Artificial Dataset

The diagnosis of Alzheimer’s disease can only be made
with absolute certainty post-mortem. Thus, the process of la-
beling each image might be prone to errors, especially while
patients are still at the early stages of the disease. Moreover, the
image acquisition, reconstruction and preprocessing (including
registration to a common space) is also not error free, with a
large number of factors contributing to artificial differences in
the values of the features. Thus, it is of great relevance to assess
the robustness of the selection step to different levels of noise
in both the class labels and feature’s values.

In this work, this was done using the artificial database de-
scribed in section 4.2. However, before proceeding with the ro-
bustness analysis, let us first analyze the typical performance of
the CAD system using the various selection procedures (shown
in Figure 5). In addition to the 4 selection algorithms presented
in section 3.1, a random selection technique and the “Ideal”
subset, which consists of all voxels in the affected regions (and
no more), were also evaluated for comparison purposes. Note
that, for the Ideal selection, the same features are always used,
even though the results are displayed as a function of the num-
ber of features in order to ease the comparison. Note also that

the mRMR algorithm could not be tested for more than 1000
features because of the prohibitive computational costs.

Several interesting observations can be drawn from this Fig-
ure, where in addition to the accuracy and AUC, we also pro-
vide the selection accuracy, which simply measures the fraction
of each selected subset that is in fact relevant (i.e. that lie inside
the 4 manually impaired regions). First of all, both mRMR and
mNRMR achieved performances close to Ideal using very small
numbers of features, while MIM and ReliefF need to select at
least 1000 to attain comparable results. In fact, these subsets
generated by mRMR and mNRMR contained only a fraction
of the total number of affected voxels, and thus they proved to
generate subsets even better than the Ideal. Second, the gen-
eralization ability of the SVM classifier was heavily deterio-
rated for large numbers of features, regardless of the selection
procedure in use. This occurs because, in this problem, the
number of relevant voxels is very small (only 1028 out of the
initial 69887), which forces the inclusion of a large number of
completely non-relevant features after all the relevant ones have
been selected. Finally, note that both mNRMR and mRMR start
including voxels from non-relevant regions before MIM or Re-
liefF. This is not surprising because, even though relevant vox-
els are still available for selection, they are not chosen since
they are completely redundant and do not add any relevant in-
formation to the subsets already selected.

5.1.1. Robustness to feature noise
We trained the CAD system to distinguish between the classes

C1 and C2 with 3 different levels of noise. More concretely, the
energy of the noise signal was set to 1%, 5% and 10% of the
energy of the uncorrupted base image. In addition, an SVM
classifier was trained using the Ideal selection process, achiev-
ing accuracies of 99.2%, 94.5% and 74.4% for the datasets with
1%, 5% and 10% of noise, respectively. The three settings are
compared in Table 3 for two numbers of selected features: 25
and 1000.

By comparing the Ideal accuracies with the ones shown in
Table 3, it is possible to assess the robustness of the various se-
lection methods to different levels of noise. First, when only
25 features are selected, the classification accuracy achieved
by MIM and ReliefF seems to be more affected by a small
noise increase (from 1% to 5%), even though every feature that
was selected in both situations comes from the affected regions.
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Figure 5: Classification performance and selection accuracy attained with each selection algorithm using the artificial database corrupted with 5% feature noise.
The accuracy is shown on the left, AUC on the middle and the selection accuracy on the right.

Table 3: Accuracy with noisy features. Performance assessment for the problems with 1% (first element of each triple), 5% (second element) and 10% (third
element) of additive feature noise. Ideal accuracies: 99.2% / 94.5% / 74.4%.

25 Features 1000 Features

Classification

Accuracy [%]

Selection

Accuracy [%]

Classification

Accuracy [%]

Selection

Accuracy [%]

MIM 97 / 83 / 64 100 / 100 / 65 99 / 95 / 69 100 / 84 / 18

ReliefF 95 / 83 / 64 100 / 100 / 51 99 / 92 / 67 100 / 74 / 13

mRMR 99 / 92 / 66 98 / 93 / 25 99 / 94 / 68 91 / 60 / 13

mNRMR 99 / 94 / 65 100 / 99 / 27 99 / 95 / 70 100 / 67 / 14

In contrast, despite the larger numbers of selection mistakes
committed by mRMR and mNRMR, their classification perfor-
mance was very close to the Ideal 94.5% for the problem with
5% feature noise. However, when the noise is increased to 10%,
all four algorithms seem to suffer significantly, yielding accu-
racies that are 8-10% lower than the Ideal 74.4%. Even though
this gap can be attenuated by increasing the number of selected
features (for instance, to 1000), it is never completely closed,
probably because the selection accuracy is too low and by the
time all discriminative information has been selected, the num-
ber of non-relevant features is too high for the SVM algorithm
to deal with.

5.1.2. Robustness to label noise
In order to assess the robustness to noisy labels, a simi-

lar experiment was conducted. An SVM classifier was trained
with all voxels contained in the affected regions, yielding ac-
curacies of 94.5%, 83.5% and 72.9% in the artificial database
where 0%, 10% and 20% of the images had been randomly mis-
labeled on purpose. Feature values were also corrupted with a
5% additive noise. Then, these results were compared with the
ones obtained with each one of the four selection techniques
(consult Table 4). As can be seen, the increase of the num-
ber of mislabeled images causes mRMR and mNRMR to se-
lect features outside the relevant regions earlier, but the larger
amount of information contained in the fewer relevant voxels
that were selected compensates for this limitation, which is the

reason why similar or even superior classification performances
are achieved in almost every setting in comparison to MIM or
ReliefF. However, all four algorithms seem to suffer with the
inclusion of wrong labels. In fact, regardless of the number of
selected voxels, the performance of all of them never reaches
the values obtained with a perfect selection of features. Gaps of
3-5% for the dataset with 10% label noise, and of 5-8% for the
dataset with 20% label noise are never closed.

5.1.3. Robustness to small sample size
One limitation is present in all works that deal with the auto-

matic diagnosis of AD and related disorders: the small sample
size of the datasets available. Even though large projects such
as ADNI have been increasing the average number of partici-
pants in these studies, this number can still be considered small
and, thus, an effort should be made to use/develop methods that
are more robust to small sample sizes. This is in fact one of
the reasons why SVMs are so popular in this field, but the other
components of the CAD system should also take this limitation
into account.

The robustness of all feature selection methods to small
sample sizes was studied in this work by reducing the number of
training samples in each iteration of the cross-validation (note
however that the initial 150 samples were still used for testing
purposes in the cross validation). Figure 6 shows the results
for two different numbers of selected features: 25 and 1000. As
can be seen, every selection method suffers when the number of
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Table 4: Accuracy with noisy labels. Performance assessment for the problems with 0% (first element of each triple), 10% (second element) and 20% (third element)
of the samples mislabeled. Ideal accuracies: 94.5% / 83.5% / 72.9%.

25 Features 1000 Features

Classification

Accuracy [%]

Selection

Accuracy [%]

Classification

Accuracy [%]

Selection

Accuracy [%]

MIM 83 / 76 / 69 100 / 99 / 83 95 / 77 / 64 84 / 58 / 29

ReliefF 83 / 75 / 64 100 / 99 / 78 92 / 77 / 68 74 / 46 / 26

mRMR 92 / 79 / 61 93 / 50 / 22 94 / 79 / 65 60 / 33 / 15

mNRMR 94 / 79 / 66 99 / 65 / 29 95 / 78 / 63 67 / 39 / 19

Figure 6: Performance assessment of each selection scheme using a varying number of training samples. Top row - Classification accuracy; Bottom row - Selection
accuracy;

training samples is too small (the gap to the Ideal performance
is larger), but both mRMR and mNRMR are able to achieve
performances already close to Ideal using only 25 features and
60 images per class. On the other hand, even though MIM and
ReliefF cannot achieve the Ideal accuracies with 25 features,
they can do it if 1000 features are allowed to be selected. Re-
call that real datasets, such as the ones presented in section 4,
already contain more than 60 patients per class.

In conclusion, the results presented in the last three subsec-
tions suggest that the selection techniques studied in this work
might be working reasonably well for the number of subjects
that databases such as ADNI have currently available, but can
be sensitive to both feature and label noise. The use/development
of selection techniques that display an increased robustness to
these issues might therefore be of great value. Nevertheless, the
experiments conducted in this work showed that our approach
is at least as good as the other selection algorithms tested. It
should be noted, however, that these results were obtained using
a simple artificial database and, thus, these conclusions should
be taken with caution.

5.2. Computational costs
The main advantage of mNRMR is the fact that it can ef-

ficiently account for the redundancy between selected features.
In order to better assess the computational requirements of the
studied algorithms, the CPU time that each algorithm took to

Figure 7: Total amount of CPU time (in minutes) spent by each algorithm to
select a varying number of features.
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Figure 8: Classification results for the different selection algorithms using the voxel intensities of FDG-PET images as features to distinguish between AD patients
and healthy individuals. The balanced accuracy is shown on the left, AUC on the middle and the ROC curve (for N = 25) on the right.

Figure 9: Classification results for the different selection algorithms using the voxel intensities of FDG-PET images as features to distinguish between MCI patients
and healthy individuals. The balanced accuracy is shown on the left, AUC on the middle and the ROC curve (for N = 25) on the right.

select the desired number of features was registered and is shown
in Figure 7. All experiments were conducted on an Intel R© CoreTM

i7-2600K processor running at 3.4 GHz. As can be seen, the
computational needs of MIM and ReliefF do not depend on the
number of features to select, but ReliefF is slower due to the
fact that it needs to find the nearest hits and misses (in the high
dimensional feature space) of every sample. As for mRMR
and mNRMR, their computational requirements increase with
the number of features. For each new selected feature, mRMR
spends most of its time estimating its mutual information with
all unselected ones. mNRMR, on the other hand, only needs
to compute the redundancy with neighboring voxels that had
not been previously selected, reducing therefore the timing re-
quirements by a large factor. In this experiment, where the ini-
tial number of the features was close to 70.000 and the average
neighborhood contained approximately 1000 voxels, mNRMR
was able to speed-up the selection process by a factor of 40.

5.3. Diagnostic performance on the ADNI database

5.3.1. FDG-PET
As mentioned earlier, FDG-PET images are being increas-

ingly used for diagnostic purposes. This technique estimates at
each location the cerebral metabolic rate for glucose (CMRglc),

producing an image that describes the pattern of brain activity
of each patient. Thus, it is possible to search for characteris-
tic patterns of brain activity that are known to be linked with
AD, such as the reduction of CMRglc at the posterior cingulate
and temporoparietal association cortices, but largely sparing the
basal ganglia, thalamus, cerebellum and cortex mediating pri-
mary sensory and motor functions [49, 50]. Supervised learning
techniques can therefore be used to expose the most affected ar-
eas and to diagnose new (unseen) images.

The CAD system proposed in this work was trained with
FDG-PET images in two different tasks: for the diagnosis of
AD (AD vs. CN) and for the diagnosis of MCI (MCI vs. CN). In
short, after preprocessing all images so that they lie in the same
stereotaxic space and with comparable intensities, the most use-
ful features were selected and used to train a linear SVM. Since
classes in the ADNI database are unbalanced, class-specific mis-
classification costs computed as explained in section 3.4 were
used to reduce the bias of the SVM algorithm towards the ma-
jority class. Figures 8 and 9 compare the classification perfor-
mance achieved by the 5 selection techniques for the diagnosis
of AD and MCI, respectively, and as a function of the number
of features. Three measures of classification performance are
shown, namely the balanced accuracy (average between sensi-
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Figure 10: Spatial distribution of the subsets of voxels selected by MIM, mRMR and mNRMR for the diagnosis of AD and MCI using FDG-PET images. The color
encodes the average number of voxels selected in each region normalized by the region’s size. The delineation of the boundaries of the above regions was obtained
by linearly aligning the Harvard-Oxford atlas [48] with the space where our images lie.

tivity and specificity), AUC and ROC curve (for N = 25).
As can be seen, both mRMR and mNRMR can select sub-

sets of features with significantly higher discriminative power
when a small number is to be chosen. This is explained by
the fact that, if the redundancy between features is disregarded
during the selection process (as done by MIM and ReliefF),
the first voxels will lie close to each other, concentrated on the
regions mostly affected by the disease. Since neighboring vox-
els typically share a large amount of information, both because
of the smooth nature of the underlying pattern of glucose con-
sumption and the fact that these images were spatially smoothed
during the preprocessing stage, then, the inclusion of neighbor-
ing features in a subset of limited size limits the amount of in-
formation that is fed to the classifier. In contrast, the features
chosen by mRMR and mNRMR are more sparsely distributed
throughout the whole image, selecting voxels not only from the
most discriminative regions, but also from regions that are not
as affected by the disease but are nevertheless important. This

greater diversity of information helps the SVM algorithm to
achieve better diagnostic performances with a very small num-
ber of features, as can be confirmed in the ROC curves plotted
for N = 25. When a large number of features is to be selected,
every algorithm (including random selection) had already the
opportunity to sample from all discriminative regions and that
is the reason why the classification performance of the 5 CAD
systems eventually converged to a maximum value, remaining
roughly stable both for the diagnosis of AD and MCI.

A Wilcoxon signed-rank test was used to compare, for each
number of features, the accuracies obtained by the proposed
algorithm with the remaining ones. In spite of a few exceptions,
statistically significant differences (at a 5% significance level)
were found between our approach and both MIM and ReliefF in
the AD vs. CN problem when using less than 1000 features, and
in the MCI vs. CN problem when using less than 50 features.
Also, no statistical significant differences were found between
our approach and mRMR (with the exception for the task AD
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Figure 11: Classification results for the different selection algorithms using the voxel intensities of the GM maps as features to distinguish between AD patients and
healthy individuals. The balanced accuracy is shown on the left, AUC on the middle and the ROC curve (for N = 25) on the right.

Figure 12: Classification results for the different selection algorithms using the voxel intensities of FDG-PET images as features to distinguish between MCI patients
and healthy individuals. The balanced accuracy is shown on the left, AUC on the middle and the ROC curve (for N = 25) on the right.

vs. CN using feature sets of dimension 2 and 5).
In order to better understand which regions played a major

role in the diagnosis and to understand the selection strategy of
the various algorithms, Figure 10 shows the spatial distribution
of the selected features broken down into the different brain
regions which were labeled according to the Harvard-Oxford
cortical and subcortical atlases [48]. For each column of these
color tables, the intensities encode the contributions of differ-
ent brain regions to the set of selected voxels. Notice that, for
the task AD vs. CN, the regions that are being selected earlier
are in fact known to be more affected by the disease according
to the literature (see above). However, important regions such
as the Hippocampus, Parahippocampal Gyrus, Angular Gyrus
and Temporal Gyrus are sampled much earlier when using mN-
RMR or mRMR. As for the task MCI vs. CN, the smaller dif-
ferences between the two classes cause greater difficulties to all
algorithms. Thus, since only barely discriminative regions ex-
ist, MIM tends to sample the brain volume more sparsely (in
comparison with the task AD vs. CN) but, nevertheless, the se-
lection of even more spatially distributed subsets of voxels with
less redundant information (as done by mNRMR and mRMR)
is advantageous for classification purposes.

In conclusion, because we are interested in reducing the di-
mensionality of the problem as much as possible while main-

taining the initial discriminative power, mRMR and mNRMR
can be considered to be superior to MIM and ReliefF. In fact,
both mRMR and mNRMR achieve the maximum classification
performance (in both problems) using very small subsets while
MIM and ReliefF need more than 1000 features to attain sim-
ilar results. Our approach can however achieve the same goal
about 40 times faster than mRMR. Furthermore, from a clas-
sification perspective, almost no differences were observed be-
tween mRMR and mNRMR, validating the latter as an efficient
approximation of the former.

5.3.2. Tissue maps of Gray-Matter
Several studies have shown that Alzheimer’s disease and

mild cognitive impairment cause brain atrophy, affecting severely
gray-matter tissues. Thus, GM maps, which when registered to
the same stereotaxic space enable us to make voxel-wise com-
parisons of the amount of gray-matter existent throughout the
cortex, are a very useful and widely used source of informa-
tion for CAD systems. Characteristic patterns of brain atrophy
(i.e. loss of brain tissue) have also been identified in previous
studies. More specifically, the hippocampus and entorhinal cor-
tex are the earliest to be affected and, as the disease progresses,
the atrophy starts spreading to the temporoparietal association
cortices, medial temporal lobe, posterior cingulate gyrus and
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Figure 13: Spatial distribution of the subsets of voxels selected by MIM, mRMR and mNRMR for the diagnosis of AD and MCI using spatially normalized maps
of Gray-Matter. The color encodes the average number of voxels selected in each region normalized by the region’s size.

precuneus. Only at the later stages, the primary visual, senso-
rimotor, and frontal cortex are affected [51]. Thus, this type of
neuroimage can also provide important discriminative informa-
tion about Alzheimer’s disease [52].

In this work, we also compared our approach with the other
feature selection techniques using GM maps. The performance
obtained for the two diagnostic problems (AD vs. CN and MCI
vs. CN) as a function of the number of selected features can be
seen in Figures 11 and 12.

The problem of distinguishing AD patients from healthy
controls was the only one where even the two methods that re-
duced the redundancy between the selected voxels could not
find a small subset of features containing all discriminative in-
formation. As can be seen in Figure 11, the inclusion of fea-
tures (up to 10 000) seems to always help the SVM classifier
to achieve better results (higher accuracy and AUC), regard-
less of the selection technique in use. Nevertheless, mRMR
and mNRMR still performed better than MIM and ReliefF for
small numbers of features, even though their performance only

peaked at K = 10000. In fact, these differences were statistical
significant up to 50 features, as measured by the Wilcoxon test.
As for the diagnosis of MCI, mNRMR attained once again its
best diagnostic performance using only 10/25 features, while
MIM and ReliefF could only achieve similar performances af-
ter selecting 1000 and 5000 features, respectively. This superior
generalization of mRMR and mNRMR for very small number
of features is evident in the ROC curves shown in Figures 11
and 12, where N is set to 25. Once again, no statistical signifi-
cant differences were found between our approach and mRMR
when using GM maps, except for the problem MCI vs. CN us-
ing 50 and 100 features.

In order to visualize what regions were considered to be the
most important for the diagnosis, Figure 13 depicts the distri-
bution of the voxels selected by MIM, mRMR and mNRMR. In
this case, the selection was concentrated as expected on regions
close to the Hippocampus such as the Inferior Temporal Gyrus,
Temporal Fusiform Cortex and Parahippocampal Gyrus. How-
ever, similarly to what happened with FDG-PET images, both
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Table 5: Summary of the best performances (maximum balanced accuray) attained by each algorithm using either FDG-PET images or GM maps to diagnose AD
or MCI. K* represents the number of features used by the reported models. When similar accuracies are achieved (±0.5%), the model that uses the smallest number
of features is reported.

AD vs. CN MCI vs. CN
K* Bal. Acc TPR TNR AUC K* Bal. Acc TPR TNR AUC

FD
G

-P
E

T

Random 69.887 84.0 86.9 81.0 92.2 25.000 62.1 49.3 75.0 68.1
MIM 5.000 86.7 88.3 85.2 93.3 250 63.6 56.3 71.0 67.8
ReliefF 2.500 86.3 86.7 85.9 92.7 250 63.6 59.2 68.0 68.5
mRMR 250 86.0 88.8 83.1 93.7 10 64.2 55.7 72.7 68.2
mNRMR 250 86.6 89.3 83.8 93.4 10 64.7 53.3 76.0 68.3

G
M

M
ap

s

Random 2.500 85.7 88.0 83.4 90.1 10.000 64.2 50.1 78.2 70.3
MIM 10.000 87.1 86.9 87.2 90.3 1.000 67.1 58.9 75.2 71.4
ReliefF 25.000 86.9 88.3 85.5 90.6 5.000 68.4 61.3 75.5 75.1
mRMR 500 83.1 84.5 81.7 88.7 100 70.0 69.2 71.8 76.5
mNRMR 10.000 87.1 86.9 87.2 90.3 25 67.9 68.8 67.0 71.6

mRMR and mNRMR were able to collect information from a
wider variety of sources when a small number of features had
to be selected. As mentioned earlier, it is this greater amount of
information that is fed to the classifier that explains the superior
performances attained by these two methods.

In sum, both mRMR and mNRMR proved once again that
they can choose subsets of features with higher discriminative
power than MIM or ReliefF, when a small number of features
is to be chosen, but our method (mNRMR) runs significantly
faster. Thus, mNRMR should be preferred when the goal is to
build a small but reliable CAD system. Finally, a summary of
the best results achieved by the 5 algorithms in the two prob-
lems using either GM maps or FDG-PET images can be con-
sulted in Table 5.

6. Conclusion

In this paper, we proposed a multivariate feature selection
algorithm which we called minimal neighborhood redundancy
maximal relevance or mNRMR, and compared it with several
widely used feature selection techniques for the diagnosis of
AD and MCI using the voxel intensities of FDG-PET images
and GM maps directly as features. Our approach has the advan-
tage of being able to reduce the amount of redundant informa-
tion among the selected features, which is of great importance
in the problem at hand due to the high redundancy between
neighboring voxels. In fact, by using mNRMR we were able to
obtain performances as good as the ones achieved with simpler
methods (and even slightly superior for the diagnosis of MCI),
but using much smaller sets of features. For example, in the di-
agnosis of AD, our approach attained its best performance using
only 250 features of the FDG-PET volume, while MIM needed
5000 to achieve similar results. Similarly, in the diagnosis of
MCI, we were able to attain comparable results using GM maps
with only 25 features, instead of 1000 used by MIM, and using
FDG-PET images with 10 features instead of 250. Even though
the same advantages can be encountered in algorithms such as
mRMR, they are computationally too demanding, preventing

them from being used in high dimensional spaces. The much
lower computational requirements of mNRMR is therefore es-
sential to the application of this type of selection algorithms to
neuroimages.

We also studied the robustness of all the selection algo-
rithms to difficulties that commonly arise in the databases used
for the diagnosis of AD and related disorders, such as the pres-
ence of noise both in the feature values and in the class la-
bels, or the reduced number of participants that are available
in these studies. Our approach proved to be at least as robust
as the other selection algorithms when confronted with these
problems. However, the performance of all algorithms suffered
when the amount of feature and label noise was increased. Even
though these results were obtained in an artificial dataset, we
believe that the development of robust approaches to these is-
sues can be a promising line of research for future work.
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